Heat Transfer

Units of heat: joule (J), Calorie (Cal), or British thermal unit (Btu)

- **1 Calorie**: amount of heat needed to raise the temperature of 1 gram of water by 1°C (from 14.5°C to 15.5°C)
- **1 Btu**: amount of heat needed to raise the temperature of 1 lb of water by 1°F (from 63°F to 64°F)
- 1 cal = 10⁻³ kcal = 3.969 x 10⁻³ Btu = 4.186 J

Heat transfer is *thermal energy in transit due to a temperature difference*.

Heat properties:
- **Specific heat capacity (c_p)**: amount of energy needed to raise the temperature of 1 kg of a substance by 1K (kJ/kg°C or kJ/kg.K)
- **Thermal conductivity (k)**: rate of heat by conduction per length of thickness (J/s.m.°C or W/m.°C, or Btu/h.ft.°F). **Denser material has higher k.**
- **Thermal Difusivity (α)**: the ratio of k to ρC_p that indicates the relative rate of heat transfer at which a material heats up
- **Coefficient heat transfer (h)**: rate of heat by convection per area (J/s.m².°C or W/m².°C, or Btu/h.ft².°F)
Steady State Heat Transfer

Rate of energy in – rate of energy out = energy accumulation = 0
Rate of energy in = rate of energy out
Physical Mechanism in Conduction

The conduction heat transfer results from diffusion of energy due to random molecular activity.

Fourier’s Law – Thermal Conductivity

\[q_x = -kA \frac{dT}{dx} \]

\[\int_{x_1}^{x} q_x \, dx = -\int_{T_1}^{T} k \, dT \]

\[q_x \int_{x_1}^{x} \frac{dx}{A} = -k \int_{T_1}^{T} \, dT \]

\[q_x = kA \frac{\Delta T}{\Delta x} \]
Contoh:
Hitung kehilangan panas per m² luas permukaan dari dinding isolator yang terbuat dari fiber dengan ketebalan 25,4 mm, dengan suhu di dalam 352,7 K dan suhu luar 297,1 K. Konduktivitas panas fiber 0,048 W/m.K

Solusi:

\[
\frac{q}{A} = k \frac{T_1 - T_2}{x_2 - x_1}
\]

\[
= 0.048 \cdot (352.7 - 297.1)
\]

0,0254

\[
= 105,1 \text{ W/m}^2
\]

Conductive heat transfer in a rectangular slab (dinding datar)

\[q_s = -kA \frac{dT(x)}{dx} \]

\[q_s = kA \frac{\Delta T}{\Delta x} \]

\[q = k \frac{T_1 - T_2}{x_2 - x_1} \]

\[q = \frac{1}{R} (T_1 - T_2) \]

\[R_{cond} = \frac{\Delta x}{kA} \]
Conductive Heat Transfer through a Tubular Pipe

\[q_r = -kA \frac{dT}{dr} \]

\[q_r = -k(2\pi r L) \frac{dT}{dr} \]

\[\frac{q_r}{2\pi L} \int_{r_i}^{r_f} \frac{dr}{r} = -k \int_{r_i}^{r_f} \frac{dT}{r} \]

\[\frac{q_r}{2\pi L} \ln \left(\frac{r_f}{r_i} \right) = -k(T_f - T_i) \]

\[q_r = \frac{(T_1 - T_2)}{\ln \left(\frac{r_f}{r_i} \right)} = \frac{(T_1 - T_2)}{(r_f - r_i)} \frac{\ln \left(\frac{r_f}{r_i} \right)}{kA_m} \]

\[A_m = \frac{A_2 - A_1}{\ln(A_2 / A_1)} \]

\[q_r = \frac{(T_1 - T_2)}{R} \]

\[R = \frac{2\pi k L}{\ln \left(\frac{r_f}{r_i} \right)} \]

Contoh:

Tabung silinder terbuat dari karet tebal mempunyai jari-jari dalam dan luar 0,5 cm dan 2 cm digunakan sebagai koil pendingin dalam bath. Air es mengalir secara cepat di dalam dan suhu di dalam 274,9 K, suhu luar 297,1 K. Total panas sebesar 14,65 W harus dihilangkan dari bath dengan koil pendingin. Berapa panjang koil yang diperlukan? k karet 0,151 W/m.K

Solusi:

\[r_1 = 0.005 \text{ m}, r_2 = 0.02 \text{ m}, T_1 = 274.9 \text{ K}, T_2 = 297.1 \text{ K}, q = 14.65 \text{ W} \]

\[-14.65 = \frac{(274.9 - 297.1)}{\ln(0.02/0.005)} \]

\[L = 0.96 \text{ m} \]
Composite rectangular wall (in series)

\[
\begin{align*}
q &= \frac{k_A(T_1 - T_2)}{\Delta x_A} = \frac{k_B(T_2 - T_3)}{\Delta x_B} = \frac{k_C(T_3 - T_4)}{\Delta x_C} \\
q &= \frac{T_1 - T_4}{R_A + R_B + R_C} \\
\end{align*}
\]

Contoh:
Ruang pendingin yang terbuat dari kayu pinus 0,5 in pada bagian dalam, cork board 4 in pada bagian tengah, dan semen 3 in pada bagian luar. Suhu permukaan dinding adalah 255,4 K pada bagian dalam dan 297,1 K pada bagian luar. Nilai k untuk pinus 0,151, untuk cork board 0,0433, untuk semen 0,762 W/m.K. Hitung kehilangan panas per m² yang terjadi dan suhu pada antarmuka antara kayu dan cork board.
Contoh:
Tabung stainless steel yang tebal (A) mempunyai k 21,63 W/m.K dengan dimensi 0,0254 m ID dan 0,0508 m OD ditutup dengan lapisan asbes (B) 0,0254 m dengan k 0,2423 W/m.K. Suhu dinding dalam pipa 811 K dan suhu permukaan luar 310.8 K. Untuk panjang pipa 0,305 m, hitung kehilangan panas dan juga suhu pada antarmuka antara logam dan isolator.
One-dimensional, steady-state solutions to the heat equation with no generation

<table>
<thead>
<tr>
<th>Plane Wall</th>
<th>Cylindrical Wall*</th>
<th>Spherical Wall*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat equation</td>
<td>(\frac{d^2T}{dx^2} = 0)</td>
<td>(\frac{1}{r} \frac{d}{dr} \left(r \frac{dT}{dr} \right) = 0)</td>
</tr>
<tr>
<td>Temperature distribution</td>
<td>(T_{x,1} - \Delta T \frac{x}{L})</td>
<td>(T_{r,2} + \Delta T \frac{\ln (r/r_2)}{\ln (r_2/r_3)})</td>
</tr>
<tr>
<td>Heat flux ((q''))</td>
<td>(k \frac{\Delta T}{L})</td>
<td>(k \Delta T/r \ln (r_3/r_1))</td>
</tr>
<tr>
<td>Heat rate ((q))</td>
<td>(kA \frac{\Delta T}{L})</td>
<td>(\frac{2\pi L k}{\ln (r_2/r_1)})</td>
</tr>
<tr>
<td>Thermal resistance ((R_{\text{cond}}))</td>
<td>(L/kA)</td>
<td>(\frac{2\pi L k}{\ln (r_2/r_1)})</td>
</tr>
</tbody>
</table>

*The critical radius of insulation is \(r_{cr} = k/h \) for the cylinder and \(r_{cr} = 2k/h \) for the sphere.

THERMAL CONDUCTIVITY CHANGE WITH TEMPERATURE

Heat transfer through a slab

\[
k = k_0(1 + \beta T)
\]

\[
q_s = kA \frac{dT}{dx}
\]

Constant \(k \):

\[
q_s = \frac{k_0 A}{\Delta x} (T_i - T_o)
\]

\(k_0 \) is thermal conductivity at \(T = \frac{T_i + T_o}{2} \)

\(k \) changes with \(T \):

\[
q_s = -\frac{k_0 A}{\Delta x} ((T_2 - T_o) + \frac{\beta}{2}(T_2^2 - T_i^2))
\]

Heat transfer through a cylindrical tube

\[
q_r = \frac{kA dT}{dr}
\]

\[
q_r = \frac{k_0 (1 + \beta T)(2\pi L) dT}{dr}
\]

\[
q_r = \frac{2\pi k_0 L}{\ln (r_2/r_1)} (1 + \beta(T_i - T_o)(T_i - T_o))
\]

Nur Istianah/THP-FTP-UB-2014
Heat transfer by convection

Rate of heat transfer

\[q = hA (T_w - T_f) \]

- \(q \) = heat transfer rate (W)
- \(A \) = luas permukaan (m\(^2\))
- \(T_w \) = suhu permukaan padatan (K)
- \(T_f \) = suhu bulk dari fluida (K)
- \(h \) = koefisien transfer panas konveksi (W/m\(^2\).K)

High value of \(h \) reflects a high rate of heat transfer. Forced convection offers a high value of \(h \) than free convection.

Combination conduction-convection

Slab / Dinding Datar

\[q = h_i A (T_i - T_3) = \frac{k\Delta x}{h_i A} (T_1 - T_4) = h_i A (T_1 - T_4) \]

\[q = \frac{T_1 - T_4}{h_i A + \frac{k\Delta x}{A} + \frac{1}{h_i A}} = UA(T_1 - T_4) \]

\[U = \frac{T_1 - T_4}{\frac{1}{h_i A} + \frac{h_i A}{k\Delta x} + \frac{1}{h_i A}} \]

Cylinder

\[q = \frac{T_1 - T_4}{h_i A + \frac{r_o - r_i}{k A_{Alm}} + \frac{1}{h_o A_o}} = U A_i (T_1 - T_4) \]

\[U_i = \frac{1}{h_i A_i + \frac{r_o - r_i}{k A_{Alm}} + \frac{1}{h_o A_o}} \]

\[U_o = \frac{1}{A_o h_i + \frac{r_o - r_i}{k A_{Alm}} + \frac{1}{h_o}} \]
Transfer Panas Unsteady State

Temperature is changing with time, it is a function of both location and time.

It was in such as process: food pasteurization, sterilization, refrigeration/chilling/cooling

Dimensionless

\[Y = \frac{T_i - T}{T_1 - T_0} \quad m = \frac{k}{h x_i} \quad X = \frac{\alpha t}{x_1^2} \quad n = \frac{x}{x_1} \quad \alpha = \frac{k}{\rho C_p} \]

\[T_1 = \text{suhu medium (K)} \]
\[T_0 = \text{suhu awal (K)} \]
\[T = \text{suhu akhir (K)} \]
\[\alpha = \text{difusivitas termal} \]
\[t = \text{waktu (detik)} \]
\[k = \text{konduktivitas panas (W/m.K)} \]
\[h = \text{koeisien transfer panas (W/m^2.K)} \]
\[\rho = \text{densitas (kg/m^3)} \]
\[c_p = \text{panas spesifik (J/kg.K)} \]
\[x = \text{posisi dari pusat (m)} \]
\[x_1 = \text{dimensi bahan (m)} \]
Contoh:
Produk butter dengan ketebalan 92,4 mm yang mempunyai suhu 277,6 K ditempatkan dalam ruangan bersuhu 297,1 K. Bagian samping dan bawah kontainer butter dianggap terisolasi, sedangkan bagian permukaan atas berhubungan dengan udara luar. Koefisien konveksi sebesar 8,52 W/m². Hitung suhu pada permukaan atas, pada jarak 25,4 mm di bawah permukaan dan pada bagian tengah dari butter setelah 5 jam diibarkan di udara luar.

k butter 0,197 W/m.K, $c_p = 2300$ J/kg.K, $\rho = 998$ kg/m³

Contoh:
Kaleng silinder berisi puree mempunyai diameter 2,68 in dan tinggi 4 in serta suhu 85 F. Kaleng ini disterilkan dalam retort dan dikenai uap dengan suhu 240 F.

Hitung suhu di pusat kaleng selama pemanasan 45 menit.

Koefisien transfer panas dari uap sebesar 4542 W/m².K. Sifat fisik dari puree adalah sebagai berikut; k 0,830 W/m.K dan $\alpha 2,007 \times 10^{-7}$ m²/s.
Two or three dimension

\[Y_x = \frac{T_1 - T_0}{X_x} \] dengan \(X_x \) dan \(m_x \)

\[Y_y = \frac{T_1 - T_0}{X_y} \] dengan \(X_y \) dan \(m_y \)

\[Y_z = \frac{T_1 - T_0}{X_z} \] dengan \(X_z \) dan \(m_z \)

\[Y_{x,y,z} = (Y_x)(Y_y)(Y_z) = \frac{T_1 - T_{x,y,z}}{T_1 - T_0} \]

Contoh:
Keterangan soal sama dengan soal sebelumnya, ditanya suhu pada pusat lingkaran-ketinggian 1 in dari dasar kaleng jika konduksi terjadi pada permukaan atas dan samping.
Contoh:

Karkas daging mempunyai nilai ρ 1073 kg/m3, cp 3,48 kJ/kg.K, dan k 0,498 W/m.K. Daging berbentuk lempeng mempunyai ketebalan 0,203 m dan suhu awal 37.8 C didinginkan sehingga suhu pusat mencapai 10 C.

Udara dingin bersuhi 1,7 C dan mempunyai nilai h 39,7 W/m2.K digunakan untuk mendinginkan.

Hitung waktu yang diperlukan.

• Pipa baja berisi uap air mempunyai diameter luar 95 mm dan nilai k sebesar 45 W/m.K. Pipa ini dilapisi dengan 75 mm isolator yang mempunyai nilai k 0,043 W/m.K. Dua termokopel ditempatkan pada antarmuka antara dinding pipa dan isolator serta pada permukaan luar isolator dan menunjukkan suhu berturut-turut 125°C dan 35°C.

• Hitung kehilangan panas yang terjadi per meter pipa.
• Daging berbentuk persegi panjang dengan ketebalan 4 cm dengan suhu awal 8°C dimasak dengan menggunakan oven bersuhu 185°C hingga mencapai suhu pusat 121°C. Koefisien konveksi diasumsikan konstan dengan nilai sebesar 25,6 W/m².K. Nilai konduktivitas panas sebesar 0,69 W/m.K dan nilai difusivitas panas (α) sebesar 5,85 x 10⁻⁴ m²/jam.

• Hitung waktu yang diperlukan untuk proses di atas!

Contoh soal (tambahan)

1. What is the rate of saturated steam(kg/h) with 120.8 kPa pressure is required to heat 100 kg/h of juice from 58°C to 95°C? Assume that the heat capacity of the juice is 4 kJ/kg°C.

 solution:

 \[Q = m \cdot C_p \cdot \Delta T = m \cdot \Delta H \rightarrow \text{use steam table} \]

 \[Q = 100 \text{ kg/h} \times 4 \text{ kJ/kg°C} \times (95-58) \text{°C} = 14800 \text{ kJ/h} \]

 \[\Delta H = 2683.8 - 440.15 = 2243.65 \text{ kJ/kg} \]

 \[m = \frac{Q}{\Delta H} = 6.596 \text{ kg/h} \]
Contoh soal

Contoh:
2. Hitung penyerapan panas (secara konduksi) per m² luas permukaan dari es balok dengan ketebalan 15 cm, dengan suhu di dalam 270 K dan suhu luar 273 K. Konduktivitas panas es 2.25 W/m.K

Penyelesaian:
\[\frac{Q}{A} = k \frac{\Delta T}{\Delta x} = 2.25 \frac{(273-270)}{0.15} = 45 \text{ W/m}^2 \]

Contoh soal

Contoh:
4. Hitung panas total yang diserap per m² luas permukaan dari es balok dengan ketebalan 15 cm yang diletakkan pada bak penyimpanan (bagian ujung-ujung dan bawah terisolasi) dan bagian atas terkena udara. Suhu di dalam es 270 K dan suhu luar es 273 K. Konduktivitas panas es 2.25 W/m.K, koefisien transfer panas udara(h),6 W/m².K asumsikan suhu udara 298 K.

Penyelesaian:
\[(Q/A)_1 = U \Delta T_{overall} \]
\[= \left(1/6 + 2.25/0.15\right) \times (298-270) \]
\[= 424.67 \text{ W/m}^2 \]
Latihan soal (tambahan)

1. Hitung penyerapan panas (secara konduksi) per m² luas permukaan dari es balok dengan ketebalan 15 cm, dengan suhu di dalam 270 K dan suhu luar 273 K. Konduktivitas panas es 2.25 W/m.K

2. Hitung panas yang diserap secara konveksi per m² luas permukaan dari es balok dengan ketebalan 15 cm yang diletakkan pada bak penyimpanan (bagian ujung-ujung dan bawah terisolasi) dan bagian atas terkena udara. Suhu di dalam es 270 K dan suhu luar es 273 K. Konduktivitas panas es 2.25 W/m.K, koefisien transfer panas udara(h),6 W/m².K asumsikan suhu udara 298 K.

3. Hitung panas total yang diserap per m² luas permukaan dari es balok dengan ketebalan 15 cm yang diletakkan pada bak penyimpanan (bagian ujung-ujung dan bawah terisolasi) dan bagian atas terkena udara. Suhu di dalam es 270 K dan suhu luar es 273 K. Konduktivitas panas es 2.25 W/m.K, koefisien transfer panas udara(h),6 W/m².K asumsikan suhu udara 298 K.
4. A stainless steel pipe \((k = 17 \text{ W/m}^\circ\text{C}) \) is being used to convey heated oil. The inside surface temperature is \(130^\circ\text{C} \). The pipe is 2 cm thick with an inside diameter of 8 cm. The pipe is insulated with 0.04 m thick insulation \((k = 0.035 \text{ W/m}^\circ\text{C}) \). The outer insulation temperature is \(25^\circ\text{C} \). Calculate the temperature of interface between steel and insulation. Assume steady-state conditions.
Contoh soal

1. What is the rate of saturated steam (kg/h) with 120.8 kPa pressure is required to heat 100 kg/h of juice from 58°C to 95°C? Assume that the heat capacity of the juice is 4 kJ/kg°C.

Solution:
\[Q = m \cdot C_p \cdot \Delta T = m \cdot \Delta H \rightarrow \text{use steam table} \]
\[Q = 100 \text{ kg/h} \times 4 \text{ kJ/kg°C} \times (95-58) \text{°C} = 14800 \text{ kJ/h} \]
\[\Delta H = 2683.8 - 440.15 = 2243.65 \text{ kJ/kg} \]
\[m = \frac{Q}{\Delta H} = 6.596 \text{ kg/h} \]
Contoh soal

Contoh:
3. Hitung panas yang diserap secara konveksi per m² luas permukaan dari es balok dengan ketebalan 15 cm yang diletakkan pada bak penyimpan (bagian ujung-ujung dan bawah terisolasi) dan bagian atas terkena udara. Suhu di dalam es 270 K dan suhu luar es 273 K. Konduktivitas panas es 2.25 W/m.K, koefisien transfer panas udara(h), 6 W/m².K asumsikan suhu udara 298 K.

Penyelesaian:
\[
\frac{(Q/A)_2}{h(T_{uara} - T_{es})} = 6 (298 - 273) = 150 \text{ W/m}^2
\]

Contoh soal

Contoh:
4. Hitung panas total yang diserap per m² luas permukaan dari es balok dengan ketebalan 15 cm yang diletakkan pada bak penyimpan (bagian ujung-ujung dan bawah terisolasi) dan bagian atas terkena udara. Suhu di dalam es 270 K dan suhu luar es 273 K. Konduktivitas panas es 2.25 W/m.K, koefisien transfer panas udara(h), 6 W/m².K asumsikan suhu udara 298 K.

Penyelesaian:
\[
\frac{(Q/A)_1}{U} = \Delta T_{overall}
\]
\[
= \left(\frac{1}{6} + \frac{2.25}{0.15}\right) \times (298 - 270)
\]
\[
= 424.67 \text{ W/m}^2
\]
THANKS FOR YOUR ATTENTION

The best person is one give something useful always

Nur Istianah-THP-FTP-UB-2014